Типы спортивных судов Устройство спортивных судов Катерные двигатели Правила плавания Общая лоция Основы спасательного дела Клининг на водных судах Полезные ссылки Полезные статьи
 

 
Основные типы спортивных моторных судов, как устроено спортивное судно, ремонт катера, ремонт водного судна, как сделать водное судно в гараже, водный спорт, судоводство речных судов, как водить судно, лоция водных путей

 

Пособие для водителей катеров, яхт, лодок, судов, водного транспорта

 

Пособие для водителей катеров, яхт, лодок, судов, водного транспорта, Управление судном, общая лоция, правила плавания, основы судовой речной практики, моющие средства для мойки днищ катеров и яхт, клининг на водном транспорте

29.05.2015 21:17
дата обновления страницы

Подвесные лодочные моторы, конструкция, система питания Дата создания сайта:
16/04/2007

 

Основные типы спортивных моторных судов
Устройство корпуса моторных спортивных судов
Основа устройства катерных двигателей
Подвесные лодочные моторы
Стационарные катерные двигатели
Механизмы линии валов катеров
Правила плавания по внутренним судоходным путям России
Общая лоция внутренних водных путей
Основы судовой речной практики
Основы спасательного дела

Полезные ссылки
Полезные статьи
Клининг на яхтах и катерах, лодках, отмываем днище
Очистка маталла
Очистка инжекторов и форсунок
 

История изменения сайта  

Яндекс метрика

Яндекс.Метрика

Интересные моменты

Читать стати: Триста практических советов по катерам, яхтам, лодкам, водным судам. Найдете все советы, самоделки, доработки, рекомендации.

 

Магнето и зажигание

Воспламенение рабочей смеси в цилиндрах подвесного мотора производится посредством электрической искры, проскакивающей между электродами запальной свечи. Для того чтобы получить такую искру, требуется ток напряжением не менее 10 000-12 000 в.

Ток высокого напряжения вырабатывается в приборе, который называется магнето. На большинстве подвесных лодочных моторов применяется маховичное магнето, располагаемое в маховике двигателя, значительно реже - обычные агрегатные магнето, которые устанавливаются на стационарных двигателях.

Маховичное магнето отличается простотой конструкции, не требует особого привода и широко применяется для двухтактных двигателей, у которых рабочий процесс совершается за один оборот коленчатого вала. У этих двигателей магнето должно давать в свече одну искру за каждый оборот коленчатого вала. Число искр и их чередование зависят от числа и расположения цилиндров двухтактного двигателя. Чтобы удовлетворять это требование, магнето должно вращаться с тем же числом оборотов, что и коленчатый вал двигателя; конструктивно это решается расположением магнето в маховике двигателя.

Маховичное магнето одноцилиндрового двухтактного двигателя дает одну искру на каждый оборот вала, у двухцилиндровых двигателей - две искры на один оборот одновременно, если цилиндры расположены оппозитно (друг против друга), или через 180°, если они находятся один над другим (блочная конструкция).

Магнето, дающее две искры одновременно на две свечи, называется двухискровым. Схема устройства маховичного магнето показана на рис. 65-Магнето состоит из двух основных частей: диска магнето ; с размещенными на нем трансформатором 3, прерывателем 4 и конденсатором 5 и маховика с магнитом 2 и кулачком прерывателя 6, находящимся на ступице маховика. Диск магнето устанавливается на верхней части картера двигателя. Маховик с магнитом закрепляется на конце коленчатого вала при помощи шпонки и гайки.

Рис. 65. Схема маховичного магнето одноцилиндрового подвесного лодочного мотора

Рис. 65. Схема маховичного магнето одноцилиндрового подвесного лодочного мотора

Трансформатор 3 состоит из сердечника, на котором имеются две обмотки: первичная и вторичная. Сердечник собран из тонких пластин трансформаторной стали, изолированных друг от друга лаком, на концах его расположены наконечники, набранные из того же материала.

Первичная обмотка состоит из небольшого количества витков (200-300) толстого провода диаметром 0,8-1,0 мм. Один конец обмотки присоединен к сердечнику трансформатора, а другой - к изолированному контакту прерывателя. На первичную обмотку намотана в несколько слоев вторичная обмотка, состоящая из большого количества витков (10 000-15 000) тонкой медной проволоки (0,07-0,10 мм). Каждый слой вторичной обмотки тщательно изолирован от следующего парафинированной бумагой, а весь трансформатор пропитывается специальным лаком.

Начало вторичной обмотки соединяется с первичной, а конец выводится к изолированному контакту, от которого идет провод к свече. У двухискровых магнето для двигателей с оппозитным расположением цилиндров трансформатор имеет две вторичные обмотки, намотанные рядом; такое магнето дает две искры одновременно.

Прерыватель 4 состоит из подвижного контакта - рычажка с пружиной (молоточка), обычно изолированного от массы, и неподвижного контакта, от массы не изолированного. Рычажок прерывателя может поворачиваться на оси, закрепленной на диске магнето, ось проходит через втулку рычажка, сделанную из изоляционного материала (текстолита). При помощи пружины подвижный контакт прижимается к неподвижному, конец рычажка, снабженный текстолитовым наконечником, скользит по кулачку, закрепленному на втулке маховика. Во время вращения маховика кулачок своим выступом в нужный момент размыкает контакты прерывателя, которые затем вновь замыкаются под действием пружины рычажка.

Контакты прерывателя изготовляются из стойкого тугоплавкого металла (вольфрама или платины). Магнит, служащий для возбуждения тока низкого напряжения в первичной обмотке, представляет собой неполное кольцо с полюсными башмаками на концах, прикрепленное на заклепках к ободу маховика.

Магнитное кольцо изготовляется из специальной магнитной стали, а полюсные башмаки - из трансформаторной стали. Маховик обычно отливается из алюминиевого сплава или какого-либо другого, не проводящего магнитных силовых линий.

При вращении маховика полюсные башмаки проходят мимо наконечников сердечника трансформатора с зазором 0,10- 0,15 мм. Так как кольцо намагничено, то в момент совпадения положительного полюсного башмака с одним наконечником сердечника, а отрицательного с другим через сердечник проходит магнитный силовой поток, исчезающий при дальнейшем повороте маховика. Этот поток возбуждает в первичной обмотке трансформатора ток низкого напряжения.

В момент, когда ток достигает максимальной величины, контакты прерывателя размыкаются, прерывая цепь тока в первичной обмотке- Ток, проходящий по первичной обмотке, создает магнитное поле вокруг ее витков, исчезающее при разрыве цепи. Магнитные силовые линии, исчезая, пересекают витки вторичной обмотки, возбуждая в ней ток высокого напряжения, который создает искру между электродами запальной свечи. Напряжение тока во вторичной обмотке зависит от числа ее витков и от быстроты исчезновения магнитного поля, создаваемого первичной обмоткой. Чем больше витков во вторичной обмотке, тем выше напряжение возбуждаемого в ней тока.

Так как величина тока в первичной обмотке зависит от положения башмаков магнита относительно наконечников сердечника трансформатора, то контакты прерывателя должны быть разомкнуты в строго определенный момент, определяем мый конструкцией магнето. На рис- 65 показано примерное положение башмаков магнита по отношению к наконечникам сердечника трансформатора, соответствующее моменту начала размыкания контактов прерывателя. В момент размыкания контактов прерывателя исчезающее магнитное поле, пересекая витки первичной обмотки, возбуждает в ней ток самоиндукции, достигающий величины 200-300 в. Ток самоиндукции вызывает искрение между контактами прерывателя, быстрое их обгорание и, затягивая исчезновение тока в первичной обмотке, понижает напряжение во вторичной.

Вредное действие токов самоиндукции уничтожается путем параллельного присоединения к контактам прерывателя конденсатора емкостью 0,25 мкф.

Конденсатор 5 на рис- 65 состоит из двух металлических обкладок (лент), изолированных друг от друга парафинированной бумагой, свернутых в трубку, помещенную в металлический футляр. Одна обкладка присоединяется к изолированному контакту прерывателя, а другая -к массе мотора.

При размыкании контактов прерывателя конденсатор заряжается током самоиндукции, возникающим в первичной обмотке, в результате искрение между контактами значительно уменьшается. Зарядившись, конденсатор разряжается через первичную обмотку, повышая продолжительность искры на электродах свечи.

Момент появления искры в свече должен быть согласован с положением поршня в цилиндре двигателя, так как смесь должна быть воспламенена в конце такта сжатия. Повернув за ручку диск магнето, можно изменить угол установки зажигания относительно ВМТ, получив опережение или запаздывание зажигания; от этого в большой степени зависит мощность и экономичность двигателя-

Сгорание рабочей смеси в цилиндре двигателя происходит не мгновенно, а в течение некоторого времени. Если воспламенение смеси производить точно в ВМТ такта сжатия, то горение смеси закончится, когда поршень сделает уже часть рабочего хода, пройдя ВМТ. При таких условиях мощность и экономичность двигателя будут низкими, а вследствие сгорания смеси при увеличивающемся объеме цилиндра он будет перегреваться. Поэтому зажигание рабочей смеси должно производиться до того, как поршень пришел к ВМТ, т. е. с некоторым опережением.

Величина опережения зажигания выражается в градусах угла поворота коленчатого вала относительно ВМТ и зависит от числа оборотов вала двигателя. С увеличением числа оборотов двигателя опережение зажигания требуется большее, а на малых оборотах - меньшее. Максимальная величина опережения зажигания в подвесных моторах при наибольшем числе оборотов доходит до 30-40° угла поворота коленчатого вала.

Слишком раннее зажигание, при котором сгорание смеси в цилиндре двигателя заканчивается еще до прихода поршня в ВМТ, вызывает стук в кривошипном механизме двигателя и приводит к падению его мощности. При запуске это может привести к обратной вспышке.

На допустимую величину угла опережения зажигания влияют также степень сжатия двигателя и октановое число топлива, на котором он работает. При больших степенях сжатия опережение зажигания берется меньшее. Чем лучше антидетонационное качество топлива, определяемое его октановым числом, т. е. чем больше это число, тем больше будет опережение зажигания.

Изменение угла опережения зажигания у большинства подвесных лодочных моторов производится вручную, путем поворота диска магнето за ручку. Если диск поворачивать в направлении, противоположном вращению маховика, то опережение увеличивается; если же диск поворачивать по направлению вращения маховика, опережение уменьшается.

Насколько сильно изменение угла опережения зажигания влияет на число оборотов коленчатого вала двигателя и развиваемую им мощность, видно на примере двигателя ЛМ-1. У этого двигателя карбюратор не имеет дроссельной заслонки, и число оборотов регулируется лишь поворотом диска магнето. Крайнее правое положение ручки диска соответствует максимальному числу оборотов коленчатого вала двигателя, а крайнее левое - остановке.

У большинства современных подвесных моторов управление опережением зажигания блокируется с дроссельной заслонкой карбюратора. Конструктивно это выполняется таким образом, что при перемещении ручки в положение "Полного газа" дроссельная заслонка открывается полностью и дальнейшее перемещение рукоятки приводит только к увеличению угла опережения, позволяя выбрать его наивыгоднейшую величину в пределах до 40-45°. Ниже дается описание устройства маховичного магнето отечественных подвесных лодочных моторов.

 

Читать про подвесные лодочные моторы...

 

Средства для чистки катеров Как очистить, отмыть днище от водорослей пластиковых, стеклопластиковых, алюминиевых, железных катеров и яхт, деревяных лодок

Чистка днищ катеров от водорослей и налета ниже ватерлинии

Чистка ультразвуком

Купить химию, кислотные и нейтральные очистители для отмывки деталей в ультразвуковых ваннах

Кислотные средства для очистки черных металлов

Чистка ультразвуком

Фаворит К для отмывания железных изделий от оксидных пленок в ультразвуковой ванне

Кислотные очистители изделий из цветных металлов

Чистка инжектора, форсунок

Купить химию для промывки инжектора и форсунок в ультразвуковой ванне

Нейтральные средства для очистки инжектора и форсунок УЗ способом

Очистка инжектора, форсунок

Качественная химия для отмывания форсунок дизельных и бензиновых, инжекторов, карбюраторов в ультразвуковой ванне

Щелочные средства для очистки инжектора и форсунок УЗ способом

Тестирование форсунок

Тестовые и тестирующие жидкости для стендов проверки и диагностики форсунок

Тестовые жидкости для диагностики форсунок

Промывка форсунок

Химия, промывки, очистители, раскоксовыватели форсунок и инжекторов

Различные очистители и химия для ультразвуковой очистки

Очистители деталей, УЗО

Химия для чистки изделий из меди, бронзы, латуни в ультразвуковой ванне

Очистители деталей из различных материалов в ультразвуковой ванне

Очистка меди и бронзы

Очистители цветных металлов в ультразвуковых ваннах

В ультразвуковой ванне

 

 

На главную страницу

Рейтинг@Mail.ru

Рейтинг@Mail.ru


Развитие водного транспорта в России   Тайны морских катастроф   Управление судном и его техническая эксплуатация от А до Я
 


Смотрите также интересные ссылки:
Ультразвуковая очистка  Чистка днищ катеров   Краски необрастайки  Водный транспорт  Химия для подвижного железнодорожного состава  Интернет магазин автокосметики Управление судном